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Abstract: We propose CP asymmetries based on triple product correlations in the decays

b̃m → tχ̃−
j with subsequent decays of t and χ̃−

j . For the subsequent χ̃−
j decay into a leptonic

final state `−ν̄χ̃0
1 we consider the three possible decay chains χ̃−

j → `− ¯̃ν → `−ν̄χ̃0
1, χ̃−

j →
˜̀−
n ν̄ → `−ν̄χ̃0

1 and χ̃−
j → W−χ̃0

1 → `−ν̄χ̃0
1. We consider two classes of CP asymmetries. In

the first class it must be possible to distinguish between different leptonic χ̃−
j decay chains,

whereas in the second class this is not necessary. We consider also the 2-body decay

χ̃−
j → W−χ̃0

1, and we assume that the momentum of the W boson can be measured. Our

framework is the minimal supersymmetric standard model with complex parameters. The

proposed CP asymmetries are non-vanishing due to non-zero phases for the parameters

µ and/or Ab. We present numerical results and estimate the observability of these CP

asymmetries.
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1. Introduction

In the Minimal Supersymmetric Standard Model (MSSM) [1, 2] the higgsino mass pa-

rameter µ and several of the Supersymmetry (SUSY) breaking parameters are complex in

general. Among the SUSY breaking parameters the trilinear scalar couplings Af and two

of the gaugino mass parameters M1 and M3 (M2 is usually chosen to be real by redefining

the fields) can be complex.

Current experimental upper bounds on the electric dipole moments (EDM) impose

restrictions on the SUSY parameters that appear in supersymmetric models, in particular

on their phases. To which extent the size of the phases have to be restricted, however,

strongly depends on the underlying model. For instance, while only relatively small values

of the phase of µ, |φµ| <∼ 0.1, are allowed in several versions of the MSSM with selectron

masses of the order 100 GeV [3], this restriction may disappear if lepton flavour violating

terms are included [4] or if the masses of the first and second generation scalar fermions

are large (above the TeV scale) while the masses of the third generation scalar fermions

are small (below 1 TeV) [5]. Recently it has been pointed out that for large trilinear scalar

couplings |A| one can simultaneously fulfill the EDM constraints of electron, neutron, and

that of the atoms 199Hg and 205Tl, where at the same time, φµ ∼ O(1) [6]. The restictions
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on the size of the phases of the trilinear couplings of the 3rd generation scalar fermions are

far less important as their contributions to the EDMs appear only at two-loop level [7].

The various CP phases can have a big influence on the production and decay of super-

symmetric particles. In particular the influence of the phases φAτ,t,b
of the trilinear scalar

coupling parameters on various observables (e.g. scalar fermion masses, cross sections, de-

cay widths) can be important [8, 9]. However, a measurement of solely CP-even observables

cannot be sufficient to unambiguously determine the SUSY parameters. Moreover, in order

to clearly demonstrate that CP is violated, CP-odd observables have to be measured. Rate

asymmetries have been proposed where the influence of the SUSY CP phases arise due to

loop corrections (see for instance [10]). Another important class of CP-odd observables are

based on triple product correlations (for an introduction see [11]). They arise already at

tree-level and allow to define various CP asymmetries which are sensitive to the different

CP phases. Such CP asymmetries have been proposed and analyzed for various SUSY

processes (see for instance [12, 13]).

Recently, it has been shown [13] that triple product correlations among the decay

products of the scalar top decay t̃ → tχ̃0 followed by the decays of t and χ̃0, allow us to

obtain information on CP violation in the scalar top system. Along the same line of the

study performed in [13], in the present paper we analyze triple product correlations that

arise in the decays of the scalar bottoms b̃m. We focus on the influence of CP violation in

the scalar bottom system, in particular on the influence of the phase of the trilinear scalar

coupling parameter Ab, φAb
.

We study the decay

b̃m → tχ̃−
j , (1.1)

followed by the subsequent decays of the top quark t and the chargino χ̃−
j . We work in the

approximation where t and χ̃−
j are both produced on mass-shell. As the top quark does

not form a bound state this implies that both t and χ̃−
j decay with definite momenta and

polarizations. Their polarizations can be retrieved from the distributions of their decay

products. We consider the decays of the top quark

t → b W+ and t → b l+νl (b c s̄) , (1.2)

and the following three possible decay chains for χ̃−
j :

χ̃−
j → `−1

¯̃ν → `−1 ν̄χ̃0
1 , (1.3)

χ̃−
j → ˜̀−

n ν̄ → `−2 ν̄χ̃0
1 , (1.4)

χ̃−
j → W−χ̃0

1 → `−3 ν̄χ̃0
1 , (1.5)

which lead to the final states

χ̃−
j → `−ν̄χ̃0

1 , ` = e, µ, τ . (1.6)

We shall consider each of the decays (1.3), (1.4), (1.5) separately. The subscript of the

leptons, `1, `2, `3, is used in order to distinguish them in the different decay chains. For
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simplicity we shall work in the narrow width approximation for the intermediate particles

in (1.3)–(1.5), i.e. we assume that these particles are produced on-mass-shell.

We consider also the 2-body decay of χ̃−
j :

χ̃−
j → W−χ̃0

1 , (1.7)

assuming the momentum of the final W boson can be reconstructed, which is possible for

hadronic decays.

We consider the triple products

O = q1 · (q2 × q3) ≡ (q1q2q3) , (1.8)

where qi are any 3-vectors of the particles in the considered process. With the help of the

triple products O, eq. (1.8), we define the T-odd observables (up-down asymmetries):

AT ≡
∫

dΩ sgn(O) dΓ/dΩ
∫

dΩ dΓ/dΩ
=

N [O > 0] − N [O < 0]

N [O > 0] + N [O < 0]
, (1.9)

where dΓ stands for the differential decay width and dΩ involves the angles of integration.

The left hand side of eq. (1.9) shows how the asymmetries are calculated, whereas the right

hand side exemplifies how they are measured in experiment: N [O > (<) 0] is the number

of events for which O > (<) 0.

The paper is organized as follows. In section 2 we present the results of our calculations

in compact form using the formalism of [14]. We propose several T-odd asymmetries in

section 3 and point out how the corresponding CP asymmetries can be obtained. In

section 4 we perform a numerical analysis of the CP asymmetries proposed and estimate

their observability. Finally, we summarize in section 5.

2. Formalism

In order to obtain analytic expressions for the sequential processes (1.1)–(1.7) we shall

use the formalism of Kawasaki, Shirafuji and Tsai [14]. According to that formalism the

differential decay rates of (1.1)–(1.7), when spin-spin correlations are taken into account,

can be written as

dΓ = dΓ(b̃m → tχ̃−
j )

Et

mtΓt
dΓ(t → . . .)

Eχj

mχj
Γχj

dΓ(χ̃−
j → . . .) , (2.1)

where dΓ(t → . . .) and dΓ(χ̃−
j → . . .) are the differential decay rates of the unpolarized

top and unpolarized chargino. The factors Eχj
/(mχj

Γχj
) and Et/(mtΓt) stem from the

narrow width approximation used for t and χ̃−
j , Γt and Γχj

are the total widths of t and

χ̃−
j , and (Et,mt) and (Eχj

,mχj
) are their energies and masses, respectively. dΓ(b̃m → tχ̃−

j )

is the differential decay rate of the scalar bottom b̃m into a top quark with the polarization

4-vector ξα
t and a chargino with the polarization 4-vector ξα

χj
.

In the scalar bottom rest frame, we have:

dΓ(b̃m → t χ̃−
j ) =

2

mb̃m

|A|2 dΦ
b̃m

, (2.2)
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where m
b̃m

is the mass of the decaying scalar bottom and the phase space element Φ
b̃

is

given in eq. (C.1) in appendix C. For the matrix element A we have

A = gū(pt)(k
b̃
mjPL + lb̃mjPR)v(pχj

) , (2.3)

where PL,R = 1
2(1∓γ5), g is the SU(2) gauge coupling constant and the couplings are given

in eq. (B.7) in appendix B. For the evaluation of |A|2 we use the spin density matrices of

t and χ̃−
j :

ρ(pt) = Λ(pt)
1 + γ5 6ξt

2
, ρ(−pχj

) = −Λ(−pχj
)

1 + γ5 6ξχj

2
, (2.4)

with

Λ(pt) = 6pt + mt , Λ(pχk
) = 6pχj

+ mχj
. (2.5)

The matrix element squared is then given by

|A|2 =
g2

2

{

(|lb̃mj |2 + |kb̃
mj |2) [(pχj

pt) + mχj
mt (ξχj

ξt)]

−(|lb̃mj |2 − |kb̃
mj |2) [mt(pχj

ξt) + mχj
(ξχj

pt)]

− 2<e(lb̃∗mjk
b̃
mj) [mχj

mt − (pχj
ξt)(ξχj

pt) + (pχj
pt)(ξχj

ξt)]

+ 2=m(lb̃∗mjk
b̃
mj) εαβγδ pχjα ξχjβ ξtγ ptδ

}

, (2.6)

where we use the convention ε0123 = 1. The covariant product εαβγδ pχjα ξχjβξtγ ptδ in

eq. (2.6) contains the triple products which give rise to the CP asymmtries that we study

in this paper. Such a term arises due to the interference of the two parts of the amplitude,

eq. (2.3), with opposite chiralities proportinal to kb̃
mj and to lb̃mj . The polarization 4-

vector ξt is determined through the top quark decays (1.2) and the polarization 4-vector

ξχj
is determined through the χ̃j decays (1.3)–(1.7). In the following we calculate the

polarization 4-vectors ξt and ξχj
as well as the differential decay rates of t and χ̃−

j for their

various decays (1.2) and (1.3)–(1.7). Some of the calculations are quite analogous to those

carried out in [13] and in these cases we present the results only.

2.1 Decay rates for χ̃−
j → `−1

¯̃ν → `−1 ν̄χ̃0
1

The polarization vector of the top quark was obtained in [13] and here we present the

results for completeness. The polarization 4-vector of the top quark determined through

the decay t → b W+, that we shall denote by ξb, equals

ξα
b = αb

mt

(ptpb)

(

pα
b − (ptpb)

m2
t

pα
t

)

, αb =
m2

t − 2m2
W

m2
t + 2m2

W

. (2.7)

For the polarization vector of the top quark determined in t → b W+ → b l+ν (and

equivalently for t → b W+ → b c s̄, where we substitute the the c quark for the lepton),

that we denote by ξl, we have

ξα
l = αl

mt

(ptpl)

(

pα
l − (ptpl)

m2
t

pα
t

)

, αl = −1 . (2.8)
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The polarization vector of χ̃−
j is determined solely through the decay χ̃−

j → `−1
¯̃ν, as

the subsequent decay of ν̃, being a scalar particle, does not contribute. We obtain:

ξα
χj

= αν̃

mχj

(pχj
p`1)

(

pα
`1
− (pχj

p`1)

m2
χj

pα
χj

)

, αν̃ =
|lν̃j |2 − |kν̃

j |2
|lν̃j |2 + |kν̃

j |2
. (2.9)

Further, according to eq. (2.1), we need the differential decay rates of t and χ̃−
j . The

distribution of the leptons in the sequential decay (1.3), in the narrow width approximation

for ν̃, is given by

dΓI
χj

(χ̃−
j → `−1 ν̄χ̃0

1) = dΓ(χ̃−
j → ˜̀−

1
¯̃ν) BR(¯̃ν → ν̄χ̃0

1) , (2.10)

where BR(¯̃ν → ν̄χ̃0
1) is the branching ratio of the decay ¯̃ν → ν̄χ̃0

1 and

dΓ(χ̃−
j → `−1

¯̃ν) =
g2 (|kν̃

j |2 + |lν̃j |2) (pχj
p`1)

2Eχj

dΦ1
χj

, (2.11)

where the couplings are given in eq. (B.8) in appendix B and the phase space element dΦ1
χj

is given in eq. (C.5) in appendix C. The differential decay rates of the top quark are (see

for instance [13]):

dΓ(t → bW+) =
g2(m2

t − m2
W ) (2m2

W + m2
t )

8Et m2
W

dΦb
t , (2.12)

dΓ(t → bl+ν) =
g4 π(ptpl) (m2

t − 2(ptpl))

2Et mW ΓW
dΦl

t , (2.13)

with dΦb,l
t given in eqs. (C.2) and (C.3) in appendix C.

The angular distributions of the decay products of t and χ̃−
j decay mode (1.3) are ob-

tained by inserting the differential decay rate of the scalar bottom, eq. (2.2), the differential

decay rates of the top quark, eqs. (2.12) and (2.13), and the differential decay rate of the

chargino, eq. (2.10), into eq. (2.1), where we use the appropriate polarization vectors as

given in eqs. (2.7)–(2.9). The differential decay rates of b̃m then read

dΓI
f = Nf

g6 BR(ν̃ → νχ̃0
1) (pχj

p`1)
(

|lν̃j |2 + |kν̃
j |2

)

8 m
b̃

mtΓt mχj
Γχj

×
{

(|lb̃mj |2 + |kb̃
mj |2) (pχj

pt) − 2 <e(lb̃∗mjk
b̃
mj)mχj

mt + · · ·

+2 =m(lb̃∗mjk
b̃
mj) αf αν̃

mt

(ptpf )

mχj

(pχj
p`1)

mb̃ (p`1pfpt)

}

dΦI
f , (2.14)

where the subindex f = b, l is to distinguish the two t quark decays in (1.2). The prefactors

in eq. (2.14) are

Nb =
(m2

t − m2
W )(2m2

W + m2
t )

2m2
W

,

Nl =
g2 2π (ptpl)(m

2
t − 2(ptpl))

mW ΓW
, (2.15)
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and the phase space elements equal

dΦI
f = dΦb̃m

dΦf
t dΦ1

χj
. (2.16)

In eq. (2.14) we have only included those terms which are needed for the calculation of

the up-down asymmetries in eq. (1.9). The omitted terms, represented by dots, are T-even

and thus, cannot contribute to the numerator of eq. (1.9). Further, as they depend on

the polarizations of either the top quark or the chargino, they cannot contribute to the

denominator of eq. (1.9).

2.2 Decay rates for χ̃−
j → ˜̀−

n ν̄ → `−2 ν̄χ̃0
1

In order to obtain the angular correlations among the t decay products and the lepton `2

stemming from the χ̃−
j decay (1.4), we need the polarization 4-vector of χ̃−

j determined in

the decay (1.4). As ˜̀
n is a scalar particle, ξχj

is determined solely in the decay χ̃−
j → ˜̀−

n ν̄.

We obtain:

ξα
χj

= α˜̀
mχj

(pχj
pν)

(

pα
ν − (pχj

pν)

m2
χj

pα
χj

)

, α˜̀ = −1 . (2.17)

The differential decay rate of the decay chain (1.4), in the narrow width approximation for
˜̀−
n , reads

dΓII
χj

(χ̃−
j → `−2 ν̄ χ̃0

1) = dΓ(χ̃−
j → ˜̀−

n ν̄)
E˜̀

m˜̀Γ˜̀
dΓ(˜̀−n → χ̃0

1`
−
2 ) , (2.18)

with the differential decay rates for χ̃−
j → ˜̀−

n ν̄ and ˜̀
n → χ̃0

1`
−
2 given by

dΓ(χ̃−
j → ˜̀−

n ν̄) =
g2

2Eχj

|l ˜̀nj|2 (pχj
pν) dΦ2

χj
, (2.19)

and

dΓ(˜̀−n → χ̃0
1`

−
2 ) =

g2

E˜̀
(|a˜̀

nk|2 + |b˜̀
nk|2) (p˜̀p`2)dΦ ˜̀ , (2.20)

where the couplings are given in appendix C in eqs. (B.9) and (B.11). The phase space

elements dΦ2
χj

and dΦ ˜̀ are given in appendix B in eqs. (C.6) and (C.7), respectively.

The angular distributions of the decay products of t are the same as in the previous

case. On the other hand, the angular distribution of the decay products of the χ̃−
j decay

mode (1.4) is given by eq. (2.18) which we insert into eq. (2.1) in order to obtain the

differential decay rates of the combined process (1.1), (1.2) and (1.4). The polarization

vector of the chargino is determined through the decay (1.4) and is given in eq. (2.17).

Then the differential decay rates of b̃m read

dΓII
f = Nf

g8 (pχj
pν)(pχ0

1
p`2)|l

˜̀
nj |2(|a

˜̀
nk|2 + |b˜̀

nk|2)
8m

b̃
mtΓtmχj

Γχj
m˜̀Γ˜̀

×
{

(|lb̃mj |2 + |kb̃
mj |2)(pχj

pt) − 2<e(lb̃∗mjk
b̃
mj)mχj

mt + · · ·

+2=m(lb̃∗mjk
b̃
mj)αfα˜̀

mt

(ptpf )

mχj

(pχj
pν)

m
b̃
(p`2pfpt)

}

dΦII
f , (2.21)
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where the phase space elements equal

dΦII
f = dΦ

b̃m
dΦf

t dΦ2
χj

dΦ ˜̀ . (2.22)

As in the previous case, we have omitted those terms in eq. (2.21) (denoted by dots) which

are unessential for the calculation of the up-down asymmetries, eq. (1.9).

2.3 Decay rates for χ̃−
j → W−χ̃0

1 → `−3 ν̄χ̃0
1

When the decay of χ̃−
j proceeds via the W− boson exchange, (1.5), the polarization 4-vector

ξχj
is parameterized by two components that are in the χ̃−

j decay plane and a component

normal to it. It can be written completely general as

ξα
χj

= P`Q
α
` + PνQα

ν + DCP εαβγδ p`3β pνγ pχjδ (2.23)

where the 4-vectors Qα
` and Qα

ν are in the decay plane of χ̃−
j :

Qα
` = pα

`3
− (p`3 pχj

)

m2
χj

pα
χj

, Qα
ν = pα

ν − (pν pχj
)

m2
χj

pα
χj

, (2.24)

and εαβγδp`3βpνγpχjδ is orthogonal to it. For the components in the decay plane we obtain

P` =
mχj

|OL
1j |2

(

2(pνpχj
) − m2

W

)

− 2mχ0
1
(pνpχj

)<e(OL∗
1j OR

1j)

|C|2 ,

Pν =
−mχj

|OR
1j |2

(

2(p`3pχj
) − m2

W

)

+ 2mχ0
1
(p`3pχj

)<e(OL∗
1j OR

1j)

|C|2 , (2.25)

with

|C|2 = −m2
W

[

|OL
1j |2(p`3pχj

) + |OR
1j |2(pνpχj

) + mχ0
1
mχj

<e(OL∗
1j OR

1j)
]

+2(p`3pχj
)(pνpχj

)(|OL
1j |2 + |OR

1j |2) , (2.26)

where the couplings are given in appendix B in eq. (B.12). The component normal to the

decay plane reads

DCP =
2mχ0

1
=m(OL

1j
∗
OR

1j)

|C|2 . (2.27)

The component DCP is sensitive to CP violation in the χ̃−
j χ̃0

1W
+ couplings, i.e. to the

phases φµ and φM1
. The decay rate distribution of χ̃−

j → W−χ̃0
1 → `−3 ν̄χ̃0

k is given by

dΓIII
χj

(χ̃−
j → `−3 ν̄ χ̃0

1) =
∑

±

g4 π

mW ΓW Eχj

|C|2 dΦIII
χj

, (2.28)

where dΦIII
χj

= 1
2π

(dΦ3
χj

)± dΦ3
W with (dΦ3

χj
)± being the phase space element for the decay

χ̃−
j → W−χ̃0

1, eq. (C.8) in appendix C, and dΦ3
W is the phase space element for the decay

W− → `−3 ν̄, eq. (C.11).
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The angular distributions of the decay products of b̃m, where the chargino decays ac-

cording to (1.5), can now be obtained in the same manner as in the previous two cases.

Again we only quote the terms that are essential for the calculation of the up-down asym-

metries in eq. (1.9):

dΓIII
f =

∑

±

Nf
g8 π |C|2

4m
b̃
mtΓtmχj

Γχj
mW ΓW

×
{

(|lb̃mj |2 + |kb̃
mj |2) (pχj

pt) − 2<e(lb̃∗mjk
b̃
mj)mχj

mt + · · ·

+2αf =m(lb̃∗mjk
b̃
mj)

mt

(ptpf )
(P` − Pν)mb̃

(p`3pfpt)]

}

dΦIII
f , (2.29)

with

dΦIII
f = dΦ

b̃
dΦf

t dΦIII
χj

, (2.30)

where the sum in eqs. (2.28) and (2.29) corresponds to the two kinematical solutions for

E`3 (for details see appendix C).

In principle, the normal component of the chargino polarization vector in eq. (2.23)

will also give rise to triple products proportional to =m(OL
kj

∗
OR

kj). However, in order to

be sensitive to these triple products, the reconstruction of the decay plane of the chargino

would be necessary. In practice, this cannot be accomplished, because the neutrino as well

as the neutralino escape detection in experiment.

2.4 Decay rates for χ̃−
j → W−χ̃0

1

Finally we consider the two-body decay mode of χ̃−
j (1.7). The polarization 4-vector of χ̃−

j

in this case is given as

ξα
χj

= αW

mχj

(pχj
pW )

(

pα
W − (pW pχj

)

m2
χj

pα
χj

)

, (2.31)

with

αW = 2

(

|OL
1j |2 − |OR

1j |2
|CW |2

)(

m2
χj

− 2m2
W − m2

χ0
1

m2
W

)

(pχj
pW ) , (2.32)

where

|CW |2 = (|OL
1j |2 + |OR

1j |2)
[

(m2
χ0

1

+ m2
χj

)m2
W + (m2

χ0
1

− m2
χj

)2 − 2m4
W

m2
W

]

− 12<e (OL
1j

∗
OR

1j)mχ0
1
mχj

. (2.33)

The decay rate distribution of χ̃−
j → W−χ̃0

1 is given by

dΓW
χj

(χ̃−
j → W− χ̃0

1) =
∑

±

g2

4Eχj

|CW |2(dΦ3
χj

)± . (2.34)

– 8 –



J
H
E
P
1
1
(
2
0
0
6
)
0
7
6

The angular distribution of the decay products of b̃m, with the chargino two-body

decay (1.7), is given by

dΓW
f =

∑

±

Nf
g6 |CW |2

16 m
b̃

mtΓt mχj
Γχj

×
{

(|lb̃mj |2 + |kb̃
mj |2) (pχj

pt) − 2 <e(lb̃∗mjk
b̃
mj)mχj

mt + · · ·

+2 =m(lb̃∗mjk
b̃
mj) αf αW

mt

(ptpf )

mχj

(pχj
p`1)

m
b̃

(pW pfpt)

}

dΦW
f , (2.35)

with

dΦW
f = dΦ

b̃
dΦf

t (dΦ3
χj

)± , (2.36)

where again we have quoted only the terms that contribute to the up-down asymmetries

in eq. (1.9). The sum in eq. (2.35) is due to the two kinematical solutions for |pW | (for

details see appendix C).

3. T-odd asymmetries

A general definition of the T-odd observables which we study in this paper has been given

in eq. (1.9). For the following it is convenient to introduce a shorthand notation for the

various T-odd asymmetries to be studied below:

Aijk =
N [(pipjpk) > 0] − N [(pipjpk) < 0]

N [(pipkpk) > 0] + N [(pipjpk) < 0]
, (3.1)

where N [(pipjpk) > 0] (N [(pipjpk) < 0]) are the number of events with (pipjpk) > 0

((pipjpk) < 0). The indices i, j, k specify the observed particles appearing in the considered

decay mode of b̃m. We choose the convention that pi denotes the momentum of a particle

originating from the χ̃−
j decay, pj denotes the momentum of a fermion from the top quark

decay and pk either denotes the momentum of the top quark itself or of another particle

stemming from the decay of the top quark. According to the different decay channels we

group the considered triple products as follows:

1. If the 3-body decay χ̃−
j → `−i ν̄χ̃0

1 is considered, the only detectable particles are

the final charged leptons `−1 , `−1 , `−3 . We shall distinguish two classes of asymmetries

depending on whether the leptons `−1 , `−2 , `−3 , originating from the different decay

chains (1.3)–(1.5), are distinguishable or not.

(a) First we define the T-odd asymmetries where the leptons from the χ̃−
j de-

cays (1.3)–(1.5) can be distinguished.1 The triple products on which the T-odd

1In principle, the leptons from the decays (1.3)–(1.5) can be distinguished through their different angular

or energy distributions.

– 9 –



J
H
E
P
1
1
(
2
0
0
6
)
0
7
6

asymmetries are based in this case, are given by

(p
`−i

pbpt) and (p
`−i

pbpW+) , when t → bW+ → bqq̄′, (3.2)

(p`−i
pl+pb), when t → bW+ → bl+ν, (3.3)

(p`−i
pcpt), (p`−i

pcpb) and (p`−i
pcps), when t → bW+ → bcs̄, (3.4)

where for the triple products in (3.4) it is necessary to identify the c quark which

is expected to be possible with reasonable efficiency and purity [15 – 17]. With

the triple products in (3.2)–(3.4) the associated T-odd asymmetries can be de-

fined according to eq. (3.1), where in the following we use the notation A`−i bt

and A
`−i bW+ for the T-odd asymmetries based on the triple products in (3.2)

etc. Note that A`−i bt and A`−i bW+ have the same value due to momentum con-

servation.

(b) We define a second class of T-odd asymmetries where it is not necessary to

distinguish the different leptonic χ̃−
j decay chains, eqs. (1.3)–(1.5). This class of

T-odd asymmetries is based on the triple products as given in (3.2)–(3.4) where

`−i is replaced by `−. Then N [(p`−pbpt) > 0] in eq. (3.1) means

N [(p`−pbpt) > 0]=N [(p`1pbpt) > 0]+N [(p`2pbpt) > 0]+N [(p`3pbpt) > 0] .

For this class of T-odd asymmetries we will use the notation A`−bt etc. The

following formula relates A`−jk to the asymmetries A`−i jk and the branching

ratios BR`i
≡ BR(χ̃−

j → `−i ν̄χ̃0
1) of the decay chains (1.3)–(1.5):

A`−jk =
BR`−

1

BR`−
A`−

1
jk +

BR`−
2

BR`−
A`−

2
jk +

BR`−
3

BR`−
A`−

3
jk , (3.5)

where we have introduced the shorthand notation BR`− :

BR`− = BR`−
1

+ BR`−
2

+ BR`−
3

. (3.6)

This formula allows us to calculate the contribution of A
`−i jk

to the asymmetry

A`−jk, depending on the branching ratios of the different decay modes of χ̃−
j .

2. If we consider the 2-body decay mode χ̃−
j → W−χ̃0

1, where the W boson decays

hadronically so that its momentum vector can be reconstructed, we can define analo-

gous triple products as in (3.2)–(3.4) with `−i replaced by W−. For the corresponding

T-odd asymmetries again we use the notation AW−bt etc.

At the end of this section, we discuss how CP-odd asymmetries can be obtained from

the T-odd asymmetries defined above. It is well known that a non-zero value of the

considered T-odd asymmetries does not necessarily imply that the CP symmetry is

violated since final state interactions give rise (although only at loop level) to the

same asymmetries. In order to identify a genuine signal of CP violation one needs

to consider also the C-conjugate decay. T-odd asymmetries that are based on triple
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products analogous to the one given in (3.2)–(3.4) can be defined for the charge

conjugate decay ¯̃bm → χ̃+
j t̄ as well, and we denote them by Aijk. One finds that

the term of the matrix element squared for the C-conjugate decay
¯̃
bm → χ̃+

j t̄ that

comprises the triple product has the same sign as the corresponding term for the

decay b̃m → χ̃−
j t. Thus, true CP violating asymmetries are obtained when summing

the T-odd asymmetries that arise in the decays b̃m → χ̃−
j t and

¯̃
bm → χ̃+

j t̄:

ACP
ijk =

Aijk + Aijk

2
. (3.7)

4. Numerical results

Now we study numerically the CP asymmetries defined in the previous section, where

we focus on their dependence on the CP phases, in particular on φAb
. All CP asymme-

tries defined in the previous section are proportional to =m(lb̃∗mjk
b̃
mj), see eq. (2.6). Hence

they measure combinations of CP phases in the MSSM. In order to see more easily the

dependence of the CP asymmetries on the parameters, it is useful to expand:

=m(lb̃∗mjk
b̃
mj) = −Yt

[

cm =m(V ∗
j2U

∗
j1) −

1

2
Yb sin 2θ

b̃
dm =m(V ∗

j2U
∗
j2e

−iφ
b̃)

]

, (4.1)

with Yt and Yb the top quark and bottom quark Yukawa couplings, c1 = cos2 θ
b̃
, c2 = sin2 θ

b̃
,

d1 = 1, d2 = −1, and θ
b̃

and φ
b̃

the mixing angle and the CP phase of the scalar bottom

system given in appendix A. In general the quantity in eq. (4.1) can be large due to the

large t- and b-quark Yukawa couplings. The relevant phases are φµ and φAb
. For φµ = 0,

we have =m(lb̃∗mjk
b̃
mj) ∝ sin 2θb̃ sin φb̃ and from the explicit expressions given in appendix A,

we obtain sin 2θ
b̃
sin φ

b̃
∝ sin φAb

. As we will see below also the asymmetries show such a

sin φAb
behavior and thus, their largest values are attained at φAb

= π/2, 3π/2. As φ
b̃

is

sensitive to φAb
if |Ab| >∼ |µ| tan β, we need a small value for tan β and a large value for

|Ab| compatible with the constraint due to the tree-level vacuum stability condition [18].

Note that in the case where |µ| tan β À |Ab| we have sin φb̃ ≈ 0 if φµ = 0, π.

For our numerical studies we adopt the two scenarios given in table 1. In the two

scenarios we have assumed the gaugino mass relation |M1| = 5/3 tan2 ΘW M2, with φM1
=

0, and we have fixed the scalar bottom masses assuming MQ̃ > MD̃. In scenario A the

scalar bottom masses are heavy enough to allow for all considered decays of χ̃−
j , eq. (1.3)–

(1.5), whereas the scalar bottom masses of scenario B are relatively light and the decay

χ̃−
j → W−χ̃0

1 is not allowed. For the matter of simplicity, our numerical investigation

is done for the first and second generation leptons where an influence of their Yukawa

couplings can be safely neglected.

In figure 1 we show the CP asymmetries that are based on the triple products, (3.2)–

(3.4), in the decays b̃1 → tχ̃−
1 , t → bl+ν (bcs̄) and χ̃−

1 → `−i ν̄χ̃0
1 as a function of φAb

.

Figure 1(a) shows the three CP asymmetries A`−i bt that are based on the triple products in

eq. (3.2) associated with the three different decay chains χ̃−
1 → `−1

¯̃ν → `−1 ν̄χ̃0
1 (dashed line),

χ̃−
1 → ˜̀−

Rν → `−2 ν̄χ̃0
1 (dotted line) and χ̃−

1 → W−χ̃0
1 → `−3 ν̄χ̃0

1 (dashdotdotted line). Fig-

ure 1(a) also shows the CP asymmetry A`−bt (solid line), eq. (3.5), where it is not necessary
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Scenario A B

M2 350 250

|µ| 310 140

φµ = φM1
0 0

tan β 3 3

|Ab| 1200 1000

m
b̃1

480 320

mb̃2
600 420

m˜̀
R

200 100

m˜̀
L

220 120

mν̃ 208.1 96.4

mχ̃0
1

164.3 80.3

mχ̃−

1

257.3 107.7

Table 1: Input parameters M2, |µ|, φµ, tanβ, |Ab|, φAb
, mb̃1

, mb̃2
, m˜̀

R
and m˜̀

L
for scenarios A

and B. All mass dimension parameters are given in GeV.

to distinguish the leptons from the different decay chains of the chargino. The asymmetry

A
`−
1

bt
is the largest one with a maximum value of about 11%. The CP asymmetries A

`−
2

bt

and A`−
3

bt have an additional phase space factor and are therefore suppressed compared to

A`−
1

bt.

We now estimate the number of scalar bottoms b̃1 necessary to observe the CP asym-

metries for a given number of standard deviations Nσ by

N
b̃1

=
Nσ

2

A2
ijk BR(b̃1 → tχ̃−

1 )(
∑

`=e,µ BR(χ̃−
1 → `−i ν̄χ̃0

1))(
∑

f BR(W+ → f))
, (4.2)

where f denotes the final state of the W+ decay considered, i.e. f = ud̄, cs̄, or l+νl, l = e, µ.

We calculate the branching ratios of b̃1 using the formulae of the second paper in [9]. For

scenario A we obtain BR(b̃1 → tχ̃−
1 ) = 4.9%. Purely for the sake of simplicity, we calculate

the chargino branching ratios BR(χ̃−
1 → `−i ν̄χ̃0

1) assuming that scalar tau mixing can be

neglected and that the lighter scalar leptons have a common mass m˜̀
R
, the heavier scalar

leptons have a common mass m˜̀
L

and the scalar neutrinos have a common mass given by

mν̃`
=

√

m2
˜̀
L

+ m2
Z cos 2β cos2 θW . (4.3)

This means that the partial decay widths Γ(χ̃−
1 → `− ¯̃ν`) are equal for ` = e, µ, τ . The

same holds for the partial decay widths Γ(χ̃−
1 → ˜̀−

Rν̄`) and Γ(˜̀−R → χ̃0
1`

−). Then we

obtain
∑

`=e,µ BR(χ̃−
1 → `−i ν̄χ̃0

1) = (31.3%, 30.7%, 1.5%) corresponding to the three differ-

ent decay chains of χ̃−
1 , (1.3)–(1.5). The values of the branching ratios of the W boson

are given by BR(W+ → ∑

l l
+ν) = 21.4% (l = e, µ), BR(W+ → ∑

q qq̄′ = 68%) and

BR(W+ → cs̄ = 32%) [19]. For an observation of the CP asymmetry A`−
1

bt at the 3-σ

level, at least 7.1 · 104 scalar bottoms have to be produced. The required number of scalar
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Figure 1: CP asymmetries Aijk which are based on the triple products (a) (p`−
i

pbpt), (b)

(p`
−

i

pl+pb), (c) (p`
−

i

pcpt) and (d) (p`
−

i

pcps) for the decays b̃1 → tχ̃−

1 , t → bl+ν (bcs̄) and

χ̃−

1 → `−i ν̄χ̃0
1, as a function of φAb

. The lepton `−1 (`−2 , `−3 ) stems from the decay χ̃−

1 → `−1
¯̃ν → `−1 ν̄χ̃0

1

(χ̃−

1
→ ˜̀−

Rν̄ → `−
2
ν̄χ̃0

1, χ̃−

1
→ W−χ̃0

1 → `−
3

ν̄χ̃0
1). The corresponding asymmetries are shown as

dashed lines (dotted lines, dashdotdotted lines). The solid lines represent the combined asymme-

tries in eq. (3.5). The MSSM parameters are for scenario A of table 1.

bottoms in order to measure the asymmetry A`−bt = 6.4% (φAb
= 0.5π) at the 3-σ level is

1 · 105.

In figure 1(b) we plot the CP asymmetries that are based on the triple products

(p`−i
pl+pb), eq. (3.3), as a function of φAb

. For the same reason as above the largest

asymmetry is due to the chargino decay chain χ̃−
1 → `−1

¯̃ν → `−1 ν̄χ̃0
1, (1.3). Its maximal

value of about 13% is reached at φAb
= 0.5π and the number of scalar bottoms necessary

to measure A`−
1

l+b at the 3-σ level is about 1.5 ·105. Figure 1(c) shows the CP asymmetries

that are based on (p`−i
pcpt) as a function of φAb

. The asymmetries shown in figure 1(c) are

more than twice as large as the asymmetries shown in figure 1. Their relative magnitudes

can be attributed (i) to the different sensitivity factors of the top quark polarization which

is αl = 1 for the asymmetries in figure 1(b),(c),(d) and αb ' 0.4 for the asymmetries in

figure 1(a), and (ii) to the different 3-vectors involved in the triple products: for figures 1(a)

and 1(c) it is pt, while for figures 1(b) and 1(d) it is the 3-vector of any of the decay

products of the t-quark, which is always smaller or at most equal in magnitude than |pt|.
For φAb

= 0.5π the CP asymmetry A`−
1

ct is about 27%, which means that 2.5 · 104 scalar
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Figure 2: CP asymmetries Aijk that are based on the triple products (pW−pcpt) (solid line),

(pW−pcps̄) (dotted line), (pW−pbpt) (dashed line) and (pW−pl+pb) (dashdotdotted line) for the

process b̃1 → tχ̃−

1 , t → bl+ν (bcs̄) and χ̃−

1 → W−χ̃0
1 → c̄sχ̃0

1 as a function of φAb
. The MSSM

parameters are given in table 1 (scenario A).

bottoms are necessary for its measurement at 3-σ. The combined asymmetry in eq. (3.5)

can be as large as about 16% and the appropriate number of scalar bottoms to probe it

at the 3-σ level is 3.6 · 104. In figure 1(d) we plot the CP asymmetries which are based on

the triple products (p
`−i

pcps̄). For φAb
= 0.5π the asymmetry is A

`−
1

cs̄
of about 10% and

at least 1.9 · 105 scalar bottoms are required for its measurement.

In figure 2 we show the CP asymmetries that are based on the triple products

(pW−pcpt), (pW−pcps), (pW−pbpt) and (pW−pl+pb) as a function of φAb
for scenario A

given in table 1. The momentum vector pW− involved in the triple products is that of the

W boson stemming from the decay χ̃−
1 → W−χ̃0

1. The largest asymmetry AW−ct attains its

maximum value of about 6% at φAb
= 0.5π. For the theoretical estimate of the number of

scalar bottoms necessary to observe this asymmetry we replace
∑

`=e,µ BR(χ̃−
1 → `−i ν̄χ̃0

1)

by BR(χ̃−
1 → W−χ̃0

1) ·
∑

q BR(W− → q̄q′) = 4.8% in eq. (4.2). We then obtain that

1.1 · 106 scalar bottoms are required for a 3-σ evidence.

In figure 3 the CP asymmetries for scenario B of table 1 are displayed. In this case the

decay χ̃−
1 → W−χ̃0

1 is kinematically not accessible. We plot the CP asymmetries for the

decay chains χ̃−
1 → `−1

¯̃ν → `−1 ν̄χ̃0
1 and χ̃−

1 → ˜̀−
Rν̄ → `−2 ν̄χ̃0

1 as a function of φAb
. For the

branching ratios we obtain BR(b̃1 → tχ̃−
1 ) = 7.2%,

∑

`=e,µ BR(χ̃−
1 → `−1 ν̄χ̃0

1) = 54.3% and
∑

`=e,µ BR(χ̃−
1 → `−2 ν̄χ̃0

1) = 12.4% in scenario B. Figure 3(a) shows the CP asymmetries

which are based on the triple products given in eq. (3.2). The largest asymmetry results

from the triple product (p`−
1

pbpt) where the lepton `−1 originates from the first step of

the decay chain χ̃−
1 → `−1

¯̃ν → `−1 ν̄χ̃0
1, and its maximum value is of about 15%. For its

measurement (at 3-σ) 16 · 104 scalar bottoms are required. The CP asymmetry that is

based on (p`−
2

pbpt), where the lepton `−2 comes from the decay chain χ̃−
1 → ˜̀−

Rν̄ → `−2 ν̄χ̃0
1
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Figure 3: CP asymmetries Aijk that are based on the triple products (a) (p`−
i

pbpt), (b)

(p`
−

i

pl+pb), (c) (p`
−

i

pcpt) and (d) (p`
−

i

pcps) for the decays b̃1 → tχ̃−

1 , t → bl+ν (bcs̄) and

χ̃−

1 → `−i ν̄χ̃0
1, as a function of φAb

. The lepton `−1 (`−2 ) stems from the decay χ̃−

1 → `−1
¯̃ν → `−1 ν̄χ̃0

1

(χ̃−

1
→ ˜̀−

Rν̄ → `−
2
ν̄χ̃0

1). The corresponding asymmetries are shown as dashed lines (dotted lines).

The solid lines represent the combined asymmetries in eq. (3.5). The MSSM parameters are for

scenario B of table 1.

is phase space suppressed. Due to the large branching ratio of χ̃−
1 → `−1 ν̄χ̃0

1 the combined

asymmetry, eq. (3.5), is about 12%, therefore 1.9 · 104 scalar bottoms would be necessary

for a measurement at the 3-σ level. In figure 3(b) we plot the CP asymmetries that are

based on the triple products defined in eq. (3.3). The largest asymmetry A`−
1

l+b reaches its

maximum value of about 13% at φAb
= 1.5π. Figure 3(c) shows the CP asymmetry formed

with the triple products (p
`−i

pcpt). As expected, the asymmetry A
`−
1

ct
is the largest and

its maximum value is of about 36%. In this case 5.5 · 103 scalar bottoms are necessary for

a measurement of A`−
1

ct at the 3-σ level. The CP asymmetry, where it is not necessary

to distinguish from which χ̃−
1 decay chain the lepton originates, reaches a maximum of

about 30%. In this case the production of 6.7 ·103 scalar bottoms is necessary to probe the

asymmetry A`−ct at 3-σ. In figure 3(d) the CP asymmetries that are based on the triple

products (p`−i
pcps) are displayed. The maximum of A`−

1
cs is about 9%, which means that

1.1 ·105 scalar bottoms are necessary to determine (at 3-σ) that the asymmetry is non-zero.

Figure 4 shows the contours of the combined asymmetry A`−ct, eq. (3.5), in the φµ-φAb

plane. The slepton masses are m˜̀
L

= 140 GeV and m˜̀
R

= 110 GeV, tan β = 10 and the
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Figure 4: Contours in the φµ-φAb
plane of the combined asymmetry, eq. (3.5), which is based on

(p`−pcpt). We take m˜̀
L

= 140GeV, m˜̀
R

= 110GeV and tanβ = 10, the other parameters are as

in scenario B of table 1.

other parameters are as given as in scenario B of table 1. For the scenario chosen, the first

term of eq. (4.1) is small compared to the second term because cos θb̃ ¿ sin θb̃. Hence, the

behavior of the asymmetry is given by the second term of eq. (4.1), which is small in the

φµ-φAb
plane where φµ + φAb

≈ 0, π because there φ
b̃
− arg[U∗

12V
∗
12] ≈ 0, π resulting in a

cancellation of the two terms in eq. (4.1). For CP phases of φµ ≈ 0.8π and φAb
≈ 0.6π the

asymmetry reaches its maximum of about 11%.

5. Summary

We have proposed various T-odd asymmetries in the decay b̃m → tχ̃−
j , which are based

on triple product correlations that involve the polarization vectors of t and χ̃−
j . The

distributions of their decay products depend on the polarizations of t and χ̃−
j . For the

χ̃−
j decay into a leptonic final state `−ν̄χ̃0

1 we have considered the three possible decay

chains χ̃−
j → `− ¯̃ν → `−ν̄χ̃0

1, χ̃−
j → ˜̀−

n → `−ν̄χ̃0
1 and χ̃−

j → W−χ̃0
1 → `−ν̄χ̃0

1. We have also

considered the 2-body decay χ̃−
j → W−χ0

1, where the W boson decays hadronically. The

proposed T-odd asymmetries are proportional to the product of left- and right-couplings

t b̃mχ̃−
k and are non-vanishing due to non-zero phases φµ and/or φAb

. Since scalar bottom

mixing can be large these asymmetries will allow us to determine the CP violating phase

φAb
, which is not easily accessible otherwise. We have also pointed out that true CP

violating asymmetries can be obtained by summing the T-odd asymmetries that arise in

the decays b̃m → χ̃−
j t and ¯̃bm → χ̃+

j t̄. In this case an identification of the charges of the

involved particles is not necessary.

In a numerical study we have presented results of these asymmetries for the decay

b̃1 → tχ̃−
1 . The asymmetry A`−

1
ct, which is based on the triple product (p`−

1

pcpt), is the
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largest one and its magnitude can be of the order 40%. We have also defined the asymmetry

A`−ct, eq. (3.5), which is based on (p`−pcpt), and where it is not necessary to distinguish

between the different leptonic χ̃−
1 decay chains. We have found that this asymmetry can go

up to 30%. By making a theoretical estimate of the number of b̃1 necessary to observe the

T-odd asymmetries we have found that a b̃1 production rate of O(103) will be necessary to

observe some of the proposed asymmetries, which should be possible at the LHC or at a

future linear collider.
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A. Scalar bottom masses and mixing

The left-right mixing of the scalar bottoms is described by a hermitian 2 × 2 mass matrix

which in the basis (b̃L, b̃R) reads

Lb̃
M = −(b̃†L, b̃†R)







M2
b̃LL

e−iφ
b̃ |M2

b̃LR
|

eiφ
b̃ |M2

b̃LR
| M2

b̃RR













b̃L

b̃R






, (A.1)

where

M2
b̃LL

= M2
Q̃

+ (−1

2
+

1

3
sin2 ΘW ) cos 2β m2

Z + m2
b , (A.2)

M2
b̃RR

= M2
D̃
− 1

3
sin2 ΘW cos 2β m2

Z + m2
b , (A.3)

M2
b̃RL

= (M2
b̃LR

)∗ = mb(Ab − µ∗ tan β), (A.4)

φ
b̃
= arg[Ab − µ∗ tan β], (A.5)

where tan β = v2/v1 with v1(v2) being the vacuum expectation value of the Higgs field

H0
1 (H0

2 ), mb is the mass of the bottom quark and ΘW is the weak mixing angle, µ is the

Higgs-higgsino mass parameter and MQ̃, MD̃, At are the soft SUSY-breaking parameters

of the scalar bottom system. The mass eigenstates b̃i are (b̃1, b̃2) = (b̃L, b̃R)Rb̃
T

with

Rb̃ =







eiφ
b̃ cos θ

b̃
sin θ

b̃

− sin θb̃ e−iφ
b̃ cos θb̃






, (A.6)

with

cos θ
b̃
=

−|M2
b̃LR

|
√

|M2
b̃LR

|2 + (m2
b̃1
− M2

b̃LL
)2

, sin θ
b̃
=

M2
b̃LL

− m2
b̃1

√

|M2
b̃LR

|2 + (m2
b̃1
− M2

b̃LL
)2

. (A.7)

The mass eigenvalues are

m2
b̃1,2

=
1

2

(

(M2
b̃LL

+ M2
b̃RR

) ∓
√

(M2
b̃LL

− M2
b̃RR

)2 + 4|M2
b̃LR

|2
)

. (A.8)
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B. Lagrangian and couplings

The parts of the Lagrangian, necessary to calculate the decay rates of b̃m → χ̃−
j t with the

subsequent decays χ̃−
j → `−ν̄χ̃0

1 are

L
tb̃χ+ = g t̄ (lb̃mj PR + kb̃

mj PL)χ̃+
j b̃m + h.c. , (B.1)

L`ν̃χ̃+ = g ¯̀(kν̃
j PL + lν̃j PR)χ̃+C

j ν̃` + h.c. , (B.2)

Lν ˜̀χ̃+ = g l
˜̀
nj ν̄` PR χ̃+

j
˜̀
n + h.c. , (B.3)

LW−χ̃+χ̃0 = gW−
µ χ̃0

kγ
µ(OL

kjPL + OR
kjPR)χ̃+

j + h.c. , (B.4)

L`˜̀χ̃0 = g ¯̀(a
˜̀
nk PR + b

˜̀
nk PL) χ̃0

k
˜̀
n + h.c. , (B.5)

Lνν̃χ̃0 = g f ν
Lkν̄`PRχ̃0

k ν̃` + h.c. , (B.6)

where the couplings are defined as

lb̃mj = −Rb̃∗
m1Uj1 + YbRb̃∗

m2Uj2 , kb̃
mj = Rb̃∗

m1 Yt V ∗
j2 , (B.7)

lν̃j = −Vj1 , kν̃
j = Y`U

∗
j2 , (B.8)

a
˜̀
nk = R˜̀∗

n1f
`
Lk + R˜̀∗

n2h
`
Rk , b

˜̀
nk = R˜̀∗

n1h
`
Lk + R˜̀∗

n2f
`
Rk , (B.9)

f `
Lk =

1√
2

(

Nk2 + tan θW Nk1

)

,

f `
Rk = −

√
2 tan θW N∗

k1 ,

h`
Rk = (hl

Lk)
∗ = −Y`Nk3 ,

f ν
Lk =

1√
2

(

tan θW Nk1 − Nk2

)

, (B.10)

l
˜̀
nj = −R˜̀∗

n1Uj1 + Y`R˜̀∗
n2Uj2 , (B.11)

OL
kj = − 1√

2
Nk4V

∗
j2 + Nk2V

∗
j1 , OR

kj =
1√
2
N∗

k3Uj2 + N∗
k2Uj1 , (B.12)

where in the above equations U and V are the unitary 2 × 2 mixing matrices that di-

agonalize the chargino mass matrix MC , U∗MCV −1 = diag(mχ1
,mχ2

), Nij is the com-

plex unitary 4 × 4 matrix which diagonalizes the neutral gaugino-higgsino mass matrix

Yαβ , N∗
iαYαβN∗

kβ = mχ0
i
δik, in the basis (B̃, W̃ 3, H̃0

1 , H̃0
2 ) [2], R˜̀

is the mixing ma-

trix in the slepton sector (see for instance [8]) and the Yukawa couplings are given by

Yt = mt/(
√

2mW sin β), Yb = mb/(
√

2mW cos β) and Y` = m`/(
√

2mW cos β), with mW

being the mass of the W boson.

C. Phase space and kinematics

We will work in the rest frame of b̃m and we fix the coordinate system so that the chargino

momentum pχj
points along the Z-axis.
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Phase space element of the decay b̃m → χ̃−
j t:

dΦ
b̃m

=
|pt|

4πm
b̃m

, |pt| =
λ

1

2 (m2
b̃m

,m2
t ,m

2
χj

)

2m
b̃m

, (C.1)

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz).

Phase space elements of the top decays (1.2):

The phase space element of the top decay t → bW+ is given as

dΦb
t =

E2
b

2(m2
t − m2

W )

dΩb

(2π)2
, Eb =

m2
t − m2

W

2(Et + |pt| cb)
. (C.2)

The phase space element of the top decay t → bl+ν reads

dΦl
t =

1

2π
dΦb

t dΦW , (C.3)

where we used the narrow width approximation for the W boson propagator. dΦW is the

phase space element for W+ → l+νl:

dΦW =
E2

l

2m2
W

dΩl

(2π)2
, El =

m2
W

2[Et + |pt|cl − Eb(1 − cbl)]
, (C.4)

where cb = cos θb, cl = cos θl and cbl = cos θbl, with θbl being the angle between pb and pl,

and dΩb = sin θbdθbdφb etc.

Phase space element for χ̃−
j decay via ν̃ exchange (1.3):

The phase space element of the decay χ̃−
j → `−1

¯̃ν reads

dΦ1
χj

=
E2

`1

2(m2
χj

− m2
ν̃)

dΩ`1

(2π)2
, E`1 =

m2
χj

− m2
ν̃

2(Eχj
− |pχj

| c1)
, (C.5)

where c1 = cos θ`1.

Phase space elements for χ̃−
j decay via ˜̀ exchange (1.4):

The phase space element of the decay χ̃−
j → ˜̀−

n ν̄ is given by

dΦ2
χj

=
E2

ν

2(m2
χj

− m2
˜̀)

dΩν

(2π)2
, Eν =

m2
χj

− m2
˜̀

2(Eχj
− |pχj

| cν)
, (C.6)

where cν = cos θν . For the subsequent decay ˜̀−
n → χ̃0

1`
−
2 the phase space element reads

dΦ ˜̀ =
E2

`2

2(m2
˜̀ − m2

χ0
1

)

dΩ`2

(2π)2
, E`2 =

m2
˜̀ − m2

χ0
1

2(E˜̀− |p˜̀| c ˜̀̀
2
)
, (C.7)

where c ˜̀̀
2

= cos θ ˜̀̀
2

being the angle between p˜̀ and p`2.

Phase space elements for χ̃−
j decay via W boson exchange (1.5):

The phase space element of the decay χ̃−
j → W−χ̃0

1 is given by

(dΦ3
χj

)± =
|p±

W |2
4|E±

W |pχj
| cos θW − Eχj

|p±
W ||

dΩW

(2π)2
, (C.8)
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with

|p±
W | =

[

(m2
χj

+ m2
W − m2

χ0
1

)|pχj
| cos θW )

± Eχj

√

λ(m2
χj

,m2
W ,m2

χ0
1

) − 4|pχj
|2 m2

W (1 − cos2 θW )
]

×
[

2|pχj
|2(1 − cos2 θW ) + 2m2

χj
)
]−1

. (C.9)

There are two solutions |p±
W | in the case |p0

χj
| < |pχj

|, where |p0
χj
| =

r

λ(m2
χj

,m2
W

,m2

χ0
1

)

2mW
is

the chargino momentum if the W boson is produced at rest. The W decay angle θW is

constrained in that case and the maximal angle θmax
W is given as

sin θmax
W =

|p0
χj
|

|pχj
| =

m
b̃m

mW

λ
1

2 (m2
χj

,m2
W ,m2

χ0
1

)

λ
1

2 (m2
b̃
,m2

χj
,m2

t )
≤ 1 . (C.10)

If |p0
χj
| > |pχj

|, the decay angle θW is not constrained and there is only the physical

solution |p+
W |.

For the subsequent decay of the W boson, W− → `−3 ν, the phase space element is

analogous to the one given in (C.4) and reads

dΦ3
W =

E2
`3

2m2
W

dΩ`3

(2π)2
, E`3 =

m2
W

2(E±
W − |p±

W | c`3W )
, (C.11)

where c`3W = cos θ`3W being the angle between p`3 and pW .
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